Altered synaptobrevin-II trafficking in neurons expressing a synaptophysin mutation associated with a severe neurodevelopmental disorder
نویسندگان
چکیده
Following exocytosis, synaptic vesicles (SVs) have to be reformed with the correct complement of proteins in the correct stoichiometry to ensure continued neurotransmission. Synaptophysin is a highly abundant, integral SV protein necessary for the efficient retrieval of the SV SNARE protein, synaptobrevin II (sybII). However the molecular mechanism underpinning synaptophysin-dependent sybII retrieval is still unclear. We recently identified a male patient with severe intellectual disability, hypotonia, epilepsy and callosal agenesis who has a point mutation in the juxtamembrane region of the fourth transmembrane domain of synaptophysin (T198I). This mutation had no effect on the activity-dependent retrieval of synaptophysin that was tagged with the genetically-encoded pH-sensitive reporter (pHluorin) in synaptophysin knockout hippocampal cultures. This suggested the mutant has no global effect on SV endocytosis, which was confirmed when retrieval of a different SV cargo (the glutamate transporter vGLUT1) was examined. However neurons expressing this T198I mutant did display impaired activity-dependent sybII retrieval, similar to that observed in synaptophysin knockout neurons. Interestingly this impairment did not result in an increased stranding of sybII at the plasma membrane. Screening of known human synaptophysin mutations revealed a similar presynaptic phenotype between T198I and a mutation found in X-linked intellectual disability. Thus this novel human synaptophysin mutation has revealed that aberrant retrieval and increased plasma membrane localisation of SV cargo can be decoupled in human disease.
منابع مشابه
X-linked intellectual disability-associated mutations in synaptophysin disrupt synaptobrevin II retrieval.
Synaptophysin is an integral synaptic vesicle (SV) protein that accounts for ∼10% of total SV protein cargo. Deletion of synaptophysin results in the defective retrieval of synaptobrevin II (sybII) from the plasma membrane during endocytosis, coupled with a slowing in the speed of endocytosis. Synaptophysin has been implicated in X-linked intellectual disability, with a recent study identifying...
متن کاملA Fine Balance of Synaptophysin Levels Underlies Efficient Retrieval of Synaptobrevin II to Synaptic Vesicles.
Synaptobrevin II (sybII) is a vesicular soluble NSF attachment protein receptor (SNARE) protein that is essential for neurotransmitter release, and thus its correct trafficking to synaptic vesicles (SVs) is critical to render them fusion competent. The SV protein synaptophysin binds to sybII and facilitates its retrieval to SVs during endocytosis. Synaptophysin and sybII are the two most abunda...
متن کاملBrain Myosin V Is a Synaptic Vesicle-associated Motor Protein: Evidence for a Ca2+-dependent Interaction with the Synaptobrevin–Synaptophysin Complex
Brain myosin V is a member of a widely distributed class of unconventional myosins that may be of central importance to organelle trafficking in all eukaryotic cells. Molecular constituents that target this molecular motor to organelles have not been previously identified. Using a combination of immunopurification, extraction, cross-linking, and coprecipitation assays, we demonstrate that the t...
متن کاملThe Sybtraps: Control of Synaptobrevin Traffic by Synaptophysin, α-Synuclein and AP-180
Synaptobrevin II (sybII) is a key fusogenic molecule on synaptic vesicles (SVs) therefore the active maintenance of both its conformation and location in sufficient numbers on this organelle is critical in both mediating and sustaining neurotransmitter release. Recently three proteins have been identified having key roles in the presentation, trafficking and retrieval of sybII during the fusion...
متن کاملDifferences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants
Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...
متن کامل